A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts.

نویسندگان

  • Yves Balmer
  • William H Vensel
  • Nick Cai
  • Wanda Manieri
  • Peter Schürmann
  • William J Hurkman
  • Bob B Buchanan
چکیده

A growing number of processes throughout biology are regulated by redox via thiol-disulfide exchange. This mechanism is particularly widespread in plants, where almost 200 proteins have been linked to thioredoxin (Trx), a widely distributed small regulatory disulfide protein. The current study extends regulation by Trx to amyloplasts, organelles prevalent in heterotrophic plant tissues that, among other biosynthetic activities, catalyze the synthesis and storage of copious amounts of starch. Using proteomics and immunological methods, we identified the components of the ferredoxin/Trx system (ferredoxin, ferredoxin-Trx reductase, and Trx), originally described for chloroplasts, in amyloplasts isolated from wheat starchy endosperm. Ferredoxin is reduced not by light, as in chloroplasts, but by metabolically generated NADPH via ferredoxin-NADP reductase. However, once reduced, ferredoxin appears to act as established for chloroplasts, i.e., via ferredoxin-Trx reductase and a Trx (m-type). A proteomics approach in combination with affinity chromatography and a fluorescent thiol probe led to the identification of 42 potential Trx target proteins, 13 not previously recognized, including a major membrane transporter (Brittle-1 or ADP-glucose transporter). The proteins function in a range of processes in addition to starch metabolism: biosynthesis of lipids, amino acids, and nucleotides; protein folding; and several miscellaneous reactions. The results suggest a mechanism whereby light is initially recognized as a thiol signal in chloroplasts, then as a sugar during transit to the sink, where it is converted again to a thiol signal. In this way, amyloplast reactions in the grain can be coordinated with photosynthesis taking place in leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ferredoxin/thioredoxin system of oxygenic photosynthesis.

Forty years ago, ferredoxin (Fdx) was shown to activate fructose 1,6-bisphosphatase in illuminated chloroplast preparations, thereby laying the foundation for the field now known as "redox biology." Enzyme activation was later shown to require the ubiquitous protein thioredoxin (Trx), reduced photosynthetically by Fdx via an enzyme then unknown-ferredoxin:thioredoxin reductase (FTR). These prot...

متن کامل

NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.

Plants have an unusual plastid-localized NADP-thioredoxin reductase C (NTRC) containing both an NADP-thioredoxin reductase (NTR) and a thioredoxin (Trx) domain in a single polypeptide. Although NTRC is known to supply reductant for detoxifying hydrogen peroxide in the dark, its other functions are unknown. We now report that NTRC plays a previously unrecognized role in the redox regulation of A...

متن کامل

Chloroplast thioredoxin systems: prospects for improving photosynthesis

Thioredoxins (TRXs) are protein oxidoreductases that control the structure and function of cellular proteins by cleavage of a disulphide bond between the side chains of two cysteine residues. Oxidized thioredoxins are reactivated by thioredoxin reductases (TR) and a TR-dependent reduction of TRXs is called a thioredoxin system. Thiol-based redox regulation is an especially important mechanism t...

متن کامل

Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.

Redox regulation based on dithiol-disulphide interchange is an essential component of the control of chloroplast metabolism. In contrast to heterotrophic organisms, and non-photosynthetic plant tissues, chloroplast redox regulation relies on ferredoxin (Fd) reduced by the photosynthetic electron transport chain, thus being highly dependent on light. The finding of the NADPH-dependent thioredoxi...

متن کامل

Ferredoxin/ferredoxin-thioredoxin reductase complex: Complete NMR mapping of the interaction site on ferredoxin by gallium substitution.

The reduction of ferredoxin-thioredoxin reductase (FTR) by plant-type ferredoxin plays an important role in redox regulation in plants and cyanobacteria. Nuclear magnetic resonance (NMR) was used to map the binding sites on Synechocystis ferredoxin for FTR. A gallium-substituted structural analog of this [2Fe-2S] ferredoxin was obtained by reconstituting the apoprotein in a refolding buffer con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 8  شماره 

صفحات  -

تاریخ انتشار 2006